73 research outputs found

    Software-Defined Networks Supporting Time-Sensitive In-Vehicular Communication

    Full text link
    Future in-vehicular networks will be based on Ethernet. The IEEE Time-Sensitive Networking (TSN) is a promising candidate to satisfy real-time requirements in future car communication. Software-Defined Networking (SDN) extends the Ethernet control plane with a programming option that can add much value to the resilience, security, and adaptivity of the automotive environment. In this work, we derive a first concept for combining Software-Defined Networking with Time-Sensitive Networking along with an initial evaluation. Our measurements are performed via a simulation that investigates whether an SDN architecture is suitable for time-critical applications in the car. Our findings indicate that the control overhead of SDN can be added without a delay penalty for the TSN traffic when protocols are mapped properly.Comment: To be published at IEEE VTC2019-Sprin

    Simulation of Mixed Critical In-vehicular Networks

    Full text link
    Future automotive applications ranging from advanced driver assistance to autonomous driving will largely increase demands on in-vehicular networks. Data flows of high bandwidth or low latency requirements, but in particular many additional communication relations will introduce a new level of complexity to the in-car communication system. It is expected that future communication backbones which interconnect sensors and actuators with ECU in cars will be built on Ethernet technologies. However, signalling from different application domains demands for network services of tailored attributes, including real-time transmission protocols as defined in the TSN Ethernet extensions. These QoS constraints will increase network complexity even further. Event-based simulation is a key technology to master the challenges of an in-car network design. This chapter introduces the domain-specific aspects and simulation models for in-vehicular networks and presents an overview of the car-centric network design process. Starting from a domain specific description language, we cover the corresponding simulation models with their workflows and apply our approach to a related case study for an in-car network of a premium car

    DoS Protection through Credit Based Metering -- Simulation-Based Evaluation for Time-Sensitive Networking in Cars

    Full text link
    Ethernet is the most promising solution to reduce complexity and enhance the bandwidth in the next generation in-car networks. Dedicated Ethernet protocols enable the real-time aspects in such networks. One promising candidate is the IEEE 802.1Q Time-Sensitive Networking protocol suite. Common Ethernet technologies, however, increases the vulnerability of the car infrastructure as they widen the attack surface for many components. In this paper proposes an IEEE 802.1Qci based algorithm that on the one hand, protects against DoS attacks by metering incoming Ethernet frames. On the other hand, it adapts to the behavior of the Credit Based Shaping algorithm, which was standardized for Audio/Video Bridging, the predecessor of Time-Sensitive Networking. A simulation of this proposed Credit Based Metering algorithm evaluates the concept.Comment: If you cite this paper, please use the original reference: P. Meyer, T. H\"ackel, F. Korf, and T. C. Schmidt. DoS Protection through Credit Based Metering - Simulation Based Evaluation for Time-Sensitive Networking in Cars. In: \emph{Proceedings of the 6th International OMNeT++ Community Summit}. September, 2019, Easychai

    SDN4CoRE: A Simulation Model for Software-Defined Networking for Communication over Real-Time Ethernet

    Full text link
    Ethernet has become the next standard for automotive and industrial automation networks. Standard extensions such as IEEE 802.1Q Time-Sensitive Networking (TSN) have been proven to meet the real-time and robustness requirements of these environments. Augmenting the TSN switching by Software-Defined Networking functions promises additional benefits: A programming option for TSN devices can add much value to the resilience, security, and adaptivity of the environment. Network simulation allows to model highly complex networks before assembly and is an essential process for the design and validation of future networks. Still, a simulation environment that supports programmable real-time networks is missing. This paper fills the gap by sharing our simulation model for Software-Defined Networking for Communication over Real-Time Ethernet (SDN4CoRE) and present initial results in modeling programmable real-time networks. In a case study, we show that SDN4CoRE can simulate complex programmable real-time networks and allows for testing and verifying the programming of real-time devices.Comment: If you cite this paper, please use the original reference: T. H\"ackel, P. Meyer, F. Korf, and T. C. Schmidt. SDN4CoRE: A Simulation Model for Software-Defined Networking for Communication over Real-Time Ethernet. In: Proceedings of the 6th International OMNeT++ Community Summit. September, 2019, Easychai

    Authenticated and Secure Automotive Service Discovery with DNSSEC and DANE

    Full text link
    Automotive softwarization is progressing and future cars are expected to operate a Service-Oriented Architecture on multipurpose compute units, which are interconnected via a high-speed Ethernet backbone. The AUTOSAR architecture foresees a universal middleware called SOME/IP that provides the service primitives, interfaces, and application protocols on top of Ethernet and IP. SOME/IP lacks a robust security architecture, even though security is an essential in future Internet-connected vehicles. In this paper, we augment the SOME/IP service discovery with an authentication and certificate management scheme based on DNSSEC and DANE. We argue that the deployment of well-proven, widely tested standard protocols should serve as an appropriate basis for a robust and reliable security infrastructure in cars. Our solution enables on-demand service authentication in offline scenarios, easy online updates, and remains free of attestation collisions. We evaluate our extension of the common vsomeip stack and find performance values that fully comply with car operations

    A QoS Aware Approach to Service-Oriented Communication in Future Automotive Networks

    Full text link
    Service-Oriented Architecture (SOA) is about to enter automotive networks based on the SOME/IP middleware and an Ethernet high-bandwidth communication layer. It promises to meet the growing demands on connectivity and flexibility for software components in modern cars. Largely heterogeneous service requirements and time-sensitive network functions make Quality-of-Service (QoS) agreements a vital building block within future automobiles. Existing middleware solutions, however, do not allow for a dynamic selection of QoS. This paper presents a service-oriented middleware for QoS aware communication in future cars. We contribute a protocol for dynamic QoS negotiation along with a multi-protocol stack, which supports the different communication classes as derived from a thorough requirements analysis. We validate the feasibility of our approach in a case study and evaluate its performance in a simulation model of a realistic in-car network. Our findings indicate that QoS aware communication can indeed meet the requirements, while the impact of the service negotiations and setup times of the network remain acceptable provided the cross-traffic during negotiations stays below 70% of the available bandwidth

    Updated International Tuberous Sclerosis Complex Diagnostic Criteria and Surveillance and Management Recommendations

    Get PDF
    Background: Tuberous sclerosis complex (TSC) is an autosomal dominant genetic disease affecting multiple body systems with wide variability in presentation. In 2013, Pediatric Neurology published articles outlining updated diagnostic criteria and recommendations for surveillance and management of disease manifestations. Advances in knowledge and approvals of new therapies necessitated a revision of those criteria and recommendations. Methods: Chairs and working group cochairs from the 2012 International TSC Consensus Group were invited to meet face-to-face over two days at the 2018 World TSC Conference on July 25 and 26 in Dallas, TX, USA. Before the meeting, working group cochairs worked with group members via e-mail and telephone to (1) review TSC literature since the 2013 publication, (2) confirm or amend prior recommendations, and (3) provide new recommendations as required. Results: Only two changes were made to clinical diagnostic criteria reported in 2013: “multiple cortical tubers and/or radial migration lines” replaced the more general term “cortical dysplasias,” and sclerotic bone lesions were reinstated as a minor criterion. Genetic diagnostic criteria were reaffirmed, including highlighting recent findings that some individuals with TSC are genetically mosaic for variants in TSC1 or TSC2. Changes to surveillance and management criteria largely reflected increased emphasis on early screening for electroencephalographic abnormalities, enhanced surveillance and management of TSC-associated neuropsychiatric disorders, and new medication approvals. Conclusions: Updated TSC diagnostic criteria and surveillance and management recommendations presented here should provide an improved framework for optimal care of those living with TSC and their families

    The Fourth International Symposium on Genetic Disorders of the Ras/MAPK pathway

    Get PDF
    The RASopathies are a group of disorders due to variations of genes associated with the Ras/MAPK pathway. Some of the RASopathies include neurofibromatosis type 1 (NF1), Noonan syndrome, Noonan syndrome with multiple lentigines, cardiofaciocutaneous (CFC) syndrome, Costello syndrome, Legius syndrome, and capillary malformation–arteriovenous malformation (CM-AVM) syndrome. In combination, the RASopathies are a frequent group of genetic disorders. This report summarizes the proceedings of the 4th International Symposium on Genetic Disorders of the Ras/MAPK pathway and highlights gaps in the field

    Updated international tuberous sclerosis complex diagnostic criteria and surveillance and management recommendations

    Get PDF
    Background Tuberous sclerosis complex (TSC) is an autosomal dominant genetic disease affecting multiple body systems with wide variability in presentation. In 2013, Pediatric Neurology published articles outlining updated diagnostic criteria and recommendations for surveillance and management of disease manifestations. Advances in knowledge and approvals of new therapies necessitated a revision of those criteria and recommendations. Methods Chairs and working group cochairs from the 2012 International TSC Consensus Group were invited to meet face-to-face over two days at the 2018 World TSC Conference on July 25 and 26 in Dallas, TX, USA. Before the meeting, working group cochairs worked with group members via e-mail and telephone to (1) review TSC literature since the 2013 publication, (2) confirm or amend prior recommendations, and (3) provide new recommendations as required. Results Only two changes were made to clinical diagnostic criteria reported in 2013: “multiple cortical tubers and/or radial migration lines” replaced the more general term “cortical dysplasias,” and sclerotic bone lesions were reinstated as a minor criterion. Genetic diagnostic criteria were reaffirmed, including highlighting recent findings that some individuals with TSC are genetically mosaic for variants in TSC1 or TSC2. Changes to surveillance and management criteria largely reflected increased emphasis on early screening for electroencephalographic abnormalities, enhanced surveillance and management of TSC-associated neuropsychiatric disorders, and new medication approvals. Conclusions Updated TSC diagnostic criteria and surveillance and management recommendations presented here should provide an improved framework for optimal care of those living with TSC and their families
    • …
    corecore